• 1.

    Goodell, M.A. & Rando, T.A. Stem Cells and Healthy Aging. Science 3501199-1204 (2015).

  • 2

    Sim, F.J., C. Zhao, J. Penderis and R.J.M. The decrease in the efficiency of age-related remyelination of the CNS is due to an alteration in the recruitment and differentiation of oligodendrocyte progenitors. J. Neurosci. 22, 2451 to 2459 (2002).

  • 3

    Gopinath, S.D. & Rando, T.A. Series of stem cell reviews: aging of the skeletal muscle stem cell niche. Aging cell 7590-598 (2008).

  • 4

    Swift, J. et al. Nuclear A-laminate evolves with tissue stiffness and improves matrix-directed differentiation. Science 3411240104 (2013).

  • 5

    Hinks, G. L. and Franklin, R. J. Delayed modifications of growth factor gene expression during slow remyelination in the CNS of aged rats. Mol. Cell. Neurosci. 16542-556 (2000).

  • 6

    Tang, D.G., Tokumoto, Y.M., Apperly, J.A., Lloyd, A.C. and Raff, M.C. Absence of replicative senescence in rat oligodendrocyte precursor cells in culture. Science 291868 to 871 (2001).

  • 7.

    Keough, M.B. et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes remyelination of the central nervous system. Nat. Common. 711312 (2016).

  • 8

    Il, L., Si, G., Huang, J., Samuel, A., D., T. and Perrimon, N. Mechanical regulation of stem cell differentiation by the stretch-activated piezoelectric channel. Nature 555103-106 (2018).

  • 9

    Eisenhoffer, G. T. et al. Overpopulation induces the extrusion of living cells to maintain the number of homeostatic cells in the epithelia. Nature 484546-549 (2012).

  • ten.

    Li, J. et al. Piezo1 integration of vascular architecture to physiological strength. Nature 515279-282 (2014).

  • 11

    McHugh, B.J. et al. Activation of integrin by Fam38A utilizes a novel R-Ras targeting mechanism on the endoplasmic reticulum. J. Cell Sci. 12351-61 (2010).

  • 12

    McHugh, B.J., Murdoch, A., Haslett, C. and Sethi, T. The loss of the integrin-activating transmembrane protein, Fam38A (Piezo1), promotes the switch to an integrin-dependent mode of cell migration. PLoS One 7, e40346 (2012).

  • 13

    Jäkel, S. et al. Altered heterogeneity of human oligodendrocytes in multiple sclerosis. Nature 566543-547 (2019).

  • 14

    Suzuki, K. et al. In vivo Genome editing via independent focused integration of CRISPR / Cas9 mediated homology. Nature 540144-149 (2016).

  • 15

    Nissim, L., Perli, S.D., Fridkin, A., Perez-Pinera, P. and Lu, T. K. Multiplexed and Programmable Gene Network Regulation with an Integrated RNA and CRISPR / Cas Toolkit in Human Cells. Mol. Cell 54698-710 (2014).

  • 16

    Chan, K. Y. et al. AAVs designed for efficient, non-invasive delivery of genes to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172-1179 (2017).

  • 17

    Duncan, I.D., Brower, A., Kondo, Y., Curlee, JJ, Jr, and Schultz, R. D. Extensive remyelination of the central nervous system leads to functional recovery. Proc. Natl Acad. Sci. United States 1066832-6836 (2009); correction 106, 12208 (2009).

  • 18

    Sellers, D.L., Maris, D.O. & Horner, P.J. Post-traumatic niches induce temporal changes in the fate of progenitors to directly repair lesions after spinal cord injury. J. Neurosci. 29, 6722 to 6733 (2009).

  • 19

    Koser, D.E., Moeendarbary, E., Hanne, J., Kuerten, S. & Franze, K. The distribution of central nervous system cells and the orientation of axons determine the mechanical properties of the spinal cord. Biophys. J. 1082137-2147 (2015).

  • 20

    Christ, A. F. et al. Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech. 432986-2992 (2010).

  • 21

    Franze, K. et al. Spatial mapping of the mechanical properties of the living retina by scanning microscopy. Soft matter 73147-3154 (2011).

  • 22

    Hertz, H. Über die Berührung fester elastischer Körper. J. Queen Angew. Math. 92156-171 (1881).

  • 23

    Koser, D.E. et al. Mechanosensitivity is essential for the growth of axons in the developing brain. Nat. Neurosci. 191592-1598 (2016).

  • 24

    Moshayedi, P. et al. The mechanosensitivity of astrocytes to optimized polyacrylamide gels analyzed by quantitative morphometry. J. Phys. Condens. material 22194114 (2010).

  • 25

    Boudou, T. et al. Extensive modeling of the micropipette aspiration experiment for characterization of Young's modulus and Poisson's ratio of adherent thin biological samples: numerical and experimental studies. J. Biomech. 391677-1685 (2006).

  • 26

    Khazipov, R. et al. Rat postnatal brain atlas in stereotaxic coordinates. Front. Neuroanat. 9161 (2015).

  • 27

    Woodruff, R.H. & Franklin, R.J.M. Demyelination and remyelination of the caudal caudal peduncle of adult rats following stereotactic injections of lysolecithin, ethidium bromide and complement / anti-galactocerebroside: comparative study. Glia 25216-222 (1999).

  • 28

    Jeffery, N.D. & Blakemore, W. F. Remyelination of spinal cord axons from demyelinated mice by local injection of lysolecithin. J. Neurocytol. 24775-781 (1995).

  • 29

    De Waele, J. et al. 3D culture of murine neural stem cells on mouse decellularized brain sections. biomaterials 41, 122-131 (2015).

  • 30

    Kay, Mr. A., him, C.-Y. & Chen, Z.-Y. A robust system for the production of minicircle DNA vectors. Nat. Biotechnol. 281287-1289 (2010).

  • 31.

    Challis, R.C. et al. Generic and targeted gene expression by AAV systemic vectors: production, purification and administration. Preprint on https://doi.org/10.1101/246405 (2018).

  • 32

    Pertea, M., Kim, D., Pertea, G., Leek, J.T. & Salzberg, S.L. Expression Analysis at the Transcription Level of Seq-RNA Experiments with HISAT, StringTie and Ballgown. Nature Protocols 111650-1667 (2016).